Problema 910

El salario diario de un mozo durante los cinco primeros años en determinada empresa se ajusta a la siguiente función, donde t representa al tiempo, en años, que lleva contratado:

a) Estudia el crecimiento y decrecimiento de la función salario y represéntela.
b) ¿En qué momento tuvo un salario máximo? ¿Y mínimo? Calcula dichos salarios.


Solución:

a) La función S es una función a trozos formada por tres funciones elementales:

  • es una función afín cuya gráfica es una recta horizontal que pasa por el punto (0,35).
  • es otra función afín cuya gráfica es una recta creciente de pendiente 10 que pasa por los puntos (1,35) y (2,45).
  • es una función cuadrática cuya gráfica es una parábola cóncava cuyo vértice está en y su valor es , y que pasa también por los puntos (2,45) y (5,46.5).

Como resultado de lo dicho anteriormente, se trata de una función continua en (0,5), es creciente en el intervalo (1,4) y decreciente en (4,5).

Pero vamos estudiar la monotonía de S utilizando la derivada (recordar la tabla de derivadas):

Existe un punto crítico en:

Estudiamos la monotonía de S en la siguiente tabla:

Según la tabla de monotonía:

  • S es creciente en (1,4).
  • S es decreciente en (4,5).
  • S presenta un máximo en el punto (4,47).

El esbozo de la gráfica es semejante a la siguiente figura:


b) El salario máximo se obtuvo cuando cumplió 4 años en la empresa y ascendió a 47 euros. El salario mínimo se obtuvo durante el primer año siendo de 35 euros diarios.

Deja un comentario