Archivo de la categoría: Aplicaciones de la integral II

Problema 1225

Considera la función f(x)=\frac3{x^2-x}.

a) Calcula su dominio y los intervalos de crecimiento y de decrecimiento.
b) Calcula una primitiva de f.
c) Calcula el área delimitada por la gráfica de la función y=f(x), el eje OX y las rectas x=2 y x=3.

Seguir leyendo Problema 1225

Problema 1221

Considera la función f:~\mathbb R\rightarrow\mathbb R dada por

y=f(x)=x^3-3x

a) Calcula la ecuación de la recta tangente a la gráfica de la función en el punto de abscisa x=-1.
b) Haz un esbozo de la gráfica de y=f(x) y calcula: los puntos de corte con los ejes, los extremos relativos y el comportamiento de la función en el infinito.
c) Calcula el área del recinto limitado por la gráfica de la función dada y la recta y=2.

Seguir leyendo Problema 1221

Problema 1189

Sea la función f(x)=4-x^2.

a) Su gráfica determina con el eje de abscisas un recinto limitado D. Calcula su área.
b) La gráfica de la función g(x)=3x^2 divide D en tres partes D_1,\,D_2,\,D_3. Haz un dibujo de los tres recintos.
c) Calcular el área del recinto D_2 que contiene al punto P(0,1).

Seguir leyendo Problema 1189

Problema 1162

a) Si f(x)=\left\{\begin{array}{ccc}\ln(x)&\text{si}&x\in(0,e]\\ax+b&\text{si}&x\in(e,\infty)\end{array}\right.,  diga qué relación tiene que existir entre los parámetros a y b para que f sea continua y cuáles tienen que ser sus valores para que f sea derivable.

b) Calcule el área de la región encerrada por el eje X, la recta x=4 y la gráfica de \left\{\begin{array}{ccc}\ln(x)&\text{si}&x\in(0,e]\\\frac xe&\text{si}&x\in(e,\infty)\end{array}\right..

Seguir leyendo Problema 1162