Archivo de la categoría: Optimización II

Problema 1149

Se han encontrado unas pinturas rupestres en una cueva situada en una zona muy pedregosa. Hay un camino que bordea parcialmente la cueva formado por el arco de curva y=4-x^2 de extremos (0, 4) y (2, 0). La cueva está situada en el punto de coordenadas (0, 2), tal como se muestra en la figura, y se quiere habilitar un acceso rectilíneo desde el camino a la cueva que sea lo más corto posible.

p1149

a) Identificar en la gráfica de la figura las coordenadas de la cueva y del punto del camino desde donde se quiere habilitar el acceso. Compruebe que la función f(x)=\sqrt{x^4-3x^2+4} nos da la distancia desde cada punto del camino a la cueva.
b) Calcular las coordenadas del punto del camino que queda más cerca de la cueva y decir cuál será la longitud del acceso d.

Sigue leyendo Problema 1149

Problema 1142

Trazamos la recta tangente a la función f(x)=\dfrac1{x^2}+1 por un punto P=(a,f(a)) del primer cuadrante. Esta recta junto con los ejes de coordenadas forman un triángulo.

p1142

a) Compruebe que el área de este triángulo, en función de a, viene dada por la función

g(a)=\dfrac{(a^2+3)^2}{4a}.

b) ¿En qué punto P el área del triángulo es mínimo? Calcula dicho valor mínimo.

Sigue leyendo Problema 1142

Problema 874

a) Calcula \displaystyle\lim_{x\rightarrow0}\dfrac{\text{sen}^2x-3x^2}{e^{x^2}-\cos2x}.

b) Se desea construir una caja de base cuadrada, con tapa y con una capacidad de 80 dm³. Para la tapa y la superficie lateral se quiere utilizar un material que cuesta 2 €/dm²y para la base otro que cuesta 3 €/dm². Calcula las dimensiones de la caja para que su coste sea mínimo.

c) Calcula \int_0^1x\ln(1+x)~dx.

Sigue leyendo Problema 874

Problema 862

a) Calcula a y b para que la función f(x)=\left\{\begin{array}{ccc}e^{2x}+ax+b&\text{si}&x<0\\\frac12(x^2+2)&\text{si}&x\geq0\end{array}\right. sea continua y derivable en x=0.

b) Calcula los vértices del rectángulo de área máxima que se puede construir, si uno de los vértices es O(0,0), otro está sobre el eje x, otro sobre el eje y y otro sobre la recta 2x+3y=8.

c) Calcula \int_0^3x\sqrt{x+1}~dx.

Sigue leyendo Problema 862

Problema 854

Da respuesta a los apartados siguientes:

a) De entre todos los triángulos rectángulos contenidos en el primer cuadrante que tienen un vértice en el origen, otro sobre la parábola y=4-x^2, un cateto sobre el eje x y el otro paralelo al eje y, obtén los catetos y la hipotenusa de aquel cuya área es máxima.
b) Enuncia los teoremas de Bolzano y de Rolle.

Sigue leyendo Problema 854

Problema 743

Queremos construir un marco rectangular de madera que delimite un área de 2 m². Sabemos que el precio de la madera es de 7,5 € / m para los lados horizontales y de 12,5 € / m para los lados verticales. Determine las dimensiones que debe tener el rectángulo para que el coste total del marco sea el mínimo posible. ¿Cuál es este coste mínimo?

Sigue leyendo Problema 743