Archivo de la etiqueta: Aproximación de la binomial a la normal

Problema 1219

Se ha hecho un estudio de un famoso jugador de baloncesto de la ACB y se sabe que tiene una probabilidad de encestar un triple del 60 %. Si realiza 8 tiros a canasta

a) Calcule la probabilidad de que enceste 5 triples.
b) Calcule la probabilidad de que enceste al menos 2.
c) Determine la media y la desviación típica de la distribución.

Seguir leyendo Problema 1219

Problema 1193

Los 5 defensas, 3 medios y 2 delanteros de un equipo de fútbol se entrenan lanzando penaltis a su portero. Los defensas marcan gol la mitad de las veces, los medios las 2/3 partes de las veces y los delanteros las 3/4 partes de las veces.

a) Se elige un jugador al azar, ¿cuál es la probabilidad de que meta el penalti?
b) Se supone que la probabilidad del apartado anterior es del 60 %. El equipo realiza en una semana 600 lanzamientos. En cada lanzamiento se elige un jugador al azar y regresa al grupo pudiendo ser elegido nuevamente. Calcula la probabilidad de que como mucho se metan 400 goles aproximando la distribución por una normal.

(Algunos valores de la función de distribución de la distribución normal de media 0 y desviación tı́pica 1:
F (3.25) = 0.9994, F (3.2917) = 0.9995, F (3.3333) = 0.9996, F (3.375) = 0.9996, F (3.4167) = 0.9997)

Seguir leyendo Problema 1193

Problema 1133

En un garaje hay 30 aparcamientos. En cada aparcamiento puede encontrarse o no un automóvil, con independencia de lo que ocurra en los otros. Si la probabilidad de que un aparcamiento esté ocupado es de 0.4, se pide:

a) Identificar y describir este modelo de probabilidad.
b) Hallar la probabilidad de que cierto día haya 8 automóviles aparcados.
c) Hallar la probabilidad de que un día haya entre 10 y 20 automóviles aparcados.

Seguir leyendo Problema 1133

Problema 932

a) En una muestra aleatoria de 200 clientes de un centro comercial, 150 efectúan sus compras utilizando la tarjeta propia del centro. Calcula un intervalo de confianza del 95% para la proporción de clientes que efectúan las compras utilizando la tarjeta propia del centro. Interpreta el intervalo obtenido.

b) Si se sabe que 8 de cada 10 clientes del centro comercial utilizan para sus compras la tarjeta propia del centro y tomamos una muestra aleatoria de 100 clientes, ¿cuál es la probabilidad de que la proporción de clientes de la muestra que utiliza la tarjeta propia del centro sea superior a 0.75?

Seguir leyendo Problema 932

Problema 904

a) En una muestra aleatoria de n=25 estudiantes de bachillerato, el 75% afirman querer realizar estudios universitarios. Calcula un intervalo de confianza para la proporción de estudiantes de bachillerato que quieren realizar estudios universitarios con un nivel de confianza del 90%.

b) Si se sabe que 8 de cada 10 estudiantes de bachillerato afirman querer realizar estudios universitarios y tomamos una muestra aleatoria de n=100 estudiantes, ¿cuál es la probabilidad de que la proporción de estudiantes de la muestra que quieren realizar estudios universitarios sea superior al 65%?

Seguir leyendo Problema 904

Problema 868

En un bombo tenemos 10 bolas idénticas numeradas del 0 al 9 y cada vez que hacemos una extracción devolvemos la bola al bombo.

a) Si hacemos 5 extracciones, calcula la probabilidad de que el 7 salga menos de dos veces.
b) Si hacemos 100 extracciones, calcula la probabilidad de que el 7 salga menos de nueve veces.

Seguir leyendo Problema 868

Problema 856

Da respuesta a los apartados siguientes:

a) Sean A y B dos sucesos de un mismo espacio muestral tales que P(A)=0.2,~P(B)=0.4 y P(A\cup B)=0.5. Calcula P(\overline A),~P(\overline B),~P(A\cap B) y P(\overline A\cup\overline B). Razona si A y B son o no sucesos independientes.
b) La probabilidad de que un determinado jugador de fútbol marque gol desde el punto de penalti es p=0.7. Si lanza 5 penaltis, calcula las siguientes tres probabilidades: de que no marque ningún gol; de que marque por lo menos 2 goles; y de que marque 5 goles. Si lanza 2100 penaltis, calcula la probabilidad de que marque por lo menos 1450 goles. Se está asumiendo que los lanzamientos son sucesos independientes.

Seguir leyendo Problema 856

Problema 844

Da respuesta a los apartados siguientes:

a) El 40% de los habitantes de una cierta comarca tienen camelias, el 35% tienen rosas y el 21% tienen camelias y rosas. Si se elige al azar a un habitante de esa comarca, calcular las cinco probabilidades siguientes: de que tenga camelias o rosas; de que no tenga ni camelias ni rosas; de que tenga camelias, sabiendo que tiene rosas; de que tenga rosas, sabiendo que tiene camelias; y de que solamente tenga rosas o solamente tenga camelias.
b) Si en un auditorio hay 50 personas, ¿cuál es la probabilidad de que por lo menos 2 hayan nacido en el mes de enero?

Seguir leyendo Problema 844

Problema 724

La probabilidad de que un pez de una determinada especie sobreviva más de 5 años es del 10 %. Se pide:

a) Si en un acuario tenemos 10 peces de esta especie nacidos este año, hallar la probabilidad de que al menos dos de ellos sigan vivos dentro de 5 años.
b) Si en un tanque de una piscifactoría hay 200 peces de esta especie nacidos este mismo año, usando una aproximación mediante la distribución normal correspondiente, hallar la probabilidad de que al cabo de 5 años hayan sobrevivido al menos 10 de ellos.

Seguir leyendo Problema 724