Archivo de la etiqueta: Dominios

Problema 1299

Dada la función f(x)=\dfrac{2x^2-3x+5}{x^2-1}, se pide:

a) Su dominio y los puntos de corte con los ejes coordenados.
b) Las asíntotas horizontales y verticales, si existen.
c) Los intervalos de crecimiento y decrecimiento.
d) Los máximos y mínimos locales.
e) La representación gráfica de la función a partir de los resultados de los apartados anteriores.

Seguir leyendo Problema 1299

Problema 1277

Se considera la función real de variable real dada por la siguiente expresión:

f(x)=3(x+k)e^{\frac{-x}2}

a) Indique el dominio de la función y obtenga razonadamente el valor del parámetro real k para que la tangente a la función en el punto de abscisa x=1 sea horizontal. Determine también la ecuación de la recta tangente a la función en dicho punto.
b) Para k=1 , señale los intervalos de crecimiento y decrecimiento de f(x).

Seguir leyendo Problema 1277

Problema 1225

Considera la función f(x)=\frac3{x^2-x}.

a) Calcula su dominio y los intervalos de crecimiento y de decrecimiento.
b) Calcula una primitiva de f.
c) Calcula el área delimitada por la gráfica de la función y=f(x), el eje OX y las rectas x=2 y x=3.

Seguir leyendo Problema 1225

Problema 1228

Consideremos la función f(x)=\frac{\ln x}{x^2}, donde ln denota el logaritmo neperiano. Resuelva justificadamente los siguientes apartados:

a) Presente el dominio, los intervalos de crecimiento y decrecimiento, así como los posibles extremos relativos de la función f(x).
b) Calcule el valor de la integral: \int_1^ef(x)~dx

Seguir leyendo Problema 1228

Problema 1156

Se da la función real f definida por f(x)=\frac{x^2+1}{x^2(x-1)}. Obtener:

a) El dominio y las asíntotas de la función f.
b) La integral \int f(x)~dx, así como la primitiva de f cuya gráfica pasa por el punto (2,0).
c) El área de la región limitada por la curva y=f(x) y las rectas y=0,~x=2,~x=4.

Seguir leyendo Problema 1156