Archivo de la etiqueta: Monotonía

Problema 1225

Considera la función f(x)=\frac3{x^2-x}.

a) Calcula su dominio y los intervalos de crecimiento y de decrecimiento.
b) Calcula una primitiva de f.
c) Calcula el área delimitada por la gráfica de la función y=f(x), el eje OX y las rectas x=2 y x=3.

Seguir leyendo Problema 1225

Problema 1228

Consideremos la función f(x)=\frac{\ln x}{x^2}, donde ln denota el logaritmo neperiano. Resuelva justificadamente los siguientes apartados:

a) Presente el dominio, los intervalos de crecimiento y decrecimiento, así como los posibles extremos relativos de la función f(x).
b) Calcule el valor de la integral: \int_1^ef(x)~dx

Seguir leyendo Problema 1228

Problema 1221

Considera la función f:~\mathbb R\rightarrow\mathbb R dada por

y=f(x)=x^3-3x

a) Calcula la ecuación de la recta tangente a la gráfica de la función en el punto de abscisa x=-1.
b) Haz un esbozo de la gráfica de y=f(x) y calcula: los puntos de corte con los ejes, los extremos relativos y el comportamiento de la función en el infinito.
c) Calcula el área del recinto limitado por la gráfica de la función dada y la recta y=2.

Seguir leyendo Problema 1221

Problema 1188

Sea la función f:~\mathbb R\rightarrow\mathbb R, f(x)=x^3-6x^2+9x.

a) Halla los puntos de corte de la función con el eje de abscisas y, si existen, los máximos y mínimos relativos y los puntos de inflexión.
b) Estudia los intervalos de crecimiento y decrecimiento, concavidad y convexidad. Esboza una gráfica de la función.
c) Calcula la recta tangente a la gráfica de la función en el punto de abscisa x=2.

Seguir leyendo Problema 1188

Problema 1159

En un triángulo isósceles, los dos lados iguales miden 10 centímetros cada uno. Obtener:

a) La expresión del área A(x) del triángulo, en función de la longitud x del tercer lado.
b) Los intervalos de crecimiento y de decrecimiento de la función A(x),~0\leq x\leq20.
c) La longitud x del tercer lado para que el área del triángulo sea máximo y el valor de este área.

Seguir leyendo Problema 1159

Problema 1149

Se han encontrado unas pinturas rupestres en una cueva situada en una zona muy pedregosa. Hay un camino que bordea parcialmente la cueva formado por el arco de curva y=4-x^2 de extremos (0, 4) y (2, 0). La cueva está situada en el punto de coordenadas (0, 2), tal como se muestra en la figura, y se quiere habilitar un acceso rectilíneo desde el camino a la cueva que sea lo más corto posible.

p1149

a) Identificar en la gráfica de la figura las coordenadas de la cueva y del punto del camino desde donde se quiere habilitar el acceso. Compruebe que la función f(x)=\sqrt{x^4-3x^2+4} nos da la distancia desde cada punto del camino a la cueva.
b) Calcular las coordenadas del punto del camino que queda más cerca de la cueva y decir cuál será la longitud del acceso d.

Seguir leyendo Problema 1149