Archivo de la etiqueta: Probabilidad total

Problema 1303

Un profesor evalúa a sus estudiantes a través de un trabajo final. El profesor sabe por experiencia que el 5% de los trabajos no son originales, sino que son plagios. El profesor dispone de un programa informático para detectar plagios. La probabilidad de que el programa no clasifique correctamente un trabajo plagiado es 0,04 y la probabilidad de que clasifique como plagio un trabajo original es 0,02.

a) Calcula la probabilidad de que un trabajo final, elegido al azar, sea clasificado como plagio por el programa informático.
b) Un trabajo es inspeccionado por el programa informático y es clasificado como original. ¿Cuál es la probabilidad de que dicho trabajo sea un plagio?
c) ¿Qué porcentaje de trabajos finales son plagios y a la vez son clasificados como tales por el programa?

Seguir leyendo Problema 1303

Problema 1273

Una asociación de senderismo ha programado tres excursiones para el mismo fin de semana. El 40% de los socios irá al nacimiento del río Cuervo, el 35% a las Hoces del río Duratón y el resto al Cañón del río Lobos. La probabilidad de lluvia en cada una de estas zonas se estima en 0,5, 0,6 y 0,45, respectivamente. Elegido un socio al azar:

a) Calcule la probabilidad de que en su excursión no llueva.
b) Si en la excursión realizada por este socio ha llovido, ¿cuál es la probabilidad de que este socio haya ido al nacimiento del río Cuervo?

Seguir leyendo Problema 1273

Problema 1267

Una empresa fabrica dos tipos de bombillas: una LED y otra halógena. Se sabe que un 5% de las LED y un 2% de las halógenas salen defectuosas. Se elige al azar una bombilla de una caja que contiene 40 bombillas LED y 10 halógenas.

a) Calcule la probabilidad de que la bombilla elegida no sea defectuosa.
b) Calcule la probabilidad de que la bombilla elegida sea LED, sabiendo que es defectuosa.

Seguir leyendo Problema 1267

Problema 1266

Una urna contiene 6 bolas rojas y 4 azules. Se extrae una bola al azar y se reemplaza por seis bolas del otro color. A continuación, se vuelve a extraer una segunda bola de la urna.

a) Calcule la probabilidad de que la segunda bola extraída sea roja.
b) Si sabemos que la segunda bola extraída es azul, ¿cuál es la probabilidad de que también lo haya sido la primera?

Seguir leyendo Problema 1266

Problema 1227

Una empresa de fabricación de impresoras tiene dos centros de producción, la fábrica europea (E) y la fábrica asiática (A). El 1% de las impresoras de la fábrica E y el 3% de las impresoras de la fábrica A se producen con un defecto. El mercado de un determinado país se abastece de impresoras procedentes de la fábrica E en un 80%, mientras que el resto proviene de la fábrica A.

a) ¿Cuál es la probabilidad de que una impresora de este país tenga el defecto?
b) Si el país tiene, aproximadamente, dos millones de impresoras fabricadas por esta empresa, ¿cuántas tendrán el defecto?
c) Si se elige al azar una impresora de este país y resulta ser una impresora defectuosa, ¿cuál es la probabilidad de que provenga de la fábrica E?

Seguir leyendo Problema 1227

Problema 1218

Una librerı́a compra lotes de material escolar a tres empresas A, B y C. A la empresa A le compra el 40 % de los lotes, a B el 25 % y a C el resto. De la empresa A le viene defectuoso el 1 % de los lotes, de B el 2 % y de C el 3 %. Elegido un lote al azar, se pide:

a) Calcule la probabilidad de que sea defectuoso.
b) Si sabemos que no es defectuoso, calcule la probabilidad de que lo haya fabricado la empresa B.

Seguir leyendo Problema 1218

Problema 1209

a) En un servicio de emergencias el 60 % de los avisos que se reciben se clasifican con el código amarillo, el 30 % con el naranja y el 10 % con el rojo. Se sabe que el porcentaje de avisos recibidos que son falsas alarmas es 3 % en el caso de código amarillo, 2 % en el naranja y 1 % en el rojo. Si se recibe un aviso,

a.1) ¿qué probabilidad hay de que se trate de una falsa alarma?
a.2) Si se sabe que el aviso recibido no ha sido falsa alarma, ¿qué probabilidad hay de que haya sido un aviso código rojo o naranja?

b) Si en una centralita se reciben 9 avisos,

b.1) ¿Qué probabilidad hay de que la centralita reciba 2 o menos avisos naranjas?
b.2) ¿Qué probabilidad hay de que todos los avisos sean amarillos o naranjas?

Seguir leyendo Problema 1209

Problema 1193

Los 5 defensas, 3 medios y 2 delanteros de un equipo de fútbol se entrenan lanzando penaltis a su portero. Los defensas marcan gol la mitad de las veces, los medios las 2/3 partes de las veces y los delanteros las 3/4 partes de las veces.

a) Se elige un jugador al azar, ¿cuál es la probabilidad de que meta el penalti?
b) Se supone que la probabilidad del apartado anterior es del 60 %. El equipo realiza en una semana 600 lanzamientos. En cada lanzamiento se elige un jugador al azar y regresa al grupo pudiendo ser elegido nuevamente. Calcula la probabilidad de que como mucho se metan 400 goles aproximando la distribución por una normal.

(Algunos valores de la función de distribución de la distribución normal de media 0 y desviación tı́pica 1:
F (3.25) = 0.9994, F (3.2917) = 0.9995, F (3.3333) = 0.9996, F (3.375) = 0.9996, F (3.4167) = 0.9997)

Seguir leyendo Problema 1193

Problema 1184

Según estadísticas del Instituto Nacional de Estadística, la probabilidad de que un varón esté en paro es del 12%, mientras que la de que una mujer lo esté es del 16%. Además, la probabilidad de ser varón es del 64% y la de ser mujer del 36%.

a) Hemos conectado por redes sociales con una persona ¿cuál es la probabilidad de que sea mujer y esté en paro?
b) Si se elige una persona al azar ¿cuál es la probabilidad de que esté en paro?
c) Hemos conectado por redes sociales con una persona que nos ha confesado estar en paro ¿cuál es la probabilidad de que sea mujer?

Nota informativa: las estadísticas anteriores (y los experimentos) están realizados con personas en disposición de trabajar.

Seguir leyendo Problema 1184

Problema 1132

En una empresa el 70 por ciento de sus trabajadoras están satisfechas con su contrato, y entre las satisfechas con su contrato el 80 por ciento gana más de 1000 euros. Entre las no satisfechas solo el 20 por ciento gana más de 1000 euros. Si se elige una trabajadora al azar:

a)¿ Cuál es la probabilidad de que gane más de 1000 euros?
b) Si gana más de 1000 euros, ¿ cuál es la probabilidad que esté satisfecha con su contrato?
c) ¿ Cuál es la probabilidad de que gane menos de 1000 euros y esté satisfecha con su  contrato?

Seguir leyendo Problema 1132