Archivo de la etiqueta: Puntos críticos

Problema 1302

Una empresa farmacéutica lanza al mercado un nuevo fármaco que se distribuye en cajas de seis unidades. La relación entre el precio de cada caja y el beneficio mensual obtenido en euros viene dada por la función

donde x es el precio de venta de una caja. Se pide:

a) ¿Qué beneficio obtiene cuando vende cada caja a 6 euros?
b) ¿Entre qué valores debe fijar el precio de venta de cada caja para obtener beneficios?
c) Calcula a qué precio ha de vender cada caja para que el beneficio sea máximo. ¿Cuál es el beneficio máximo?
d) ¿Entre qué valores el beneficio crece y entre qué valores el beneficio decrece?

Seguir leyendo Problema 1302

Problema 1297

Un centro de formación organiza un curso subvencionado que tiene un coste fijo de 9.000 €, al que hay que sumar una cantidad que varía según el número de alumnos del curso y que es dada por la función , donde x representa el número de alumnos matriculados. El Consejo Comarcal ha otorgado al centro una subvención de 5.000 € para la organización del curso y el Ayuntamiento paga el centro 30 € por cada alumno matriculado.
El gasto que debe asumir el centro es la diferencia entre el coste total del curso y las dos subvenciones recibidas. ¿Cuántos alumnos deben matricularse en el curso para que el gasto sea mínimo para el centro y cuál sería este gasto?

Seguir leyendo Problema 1297

Problema 1295

Considere la función

a) Hallar los valores de los parámetros a, b y c sabiendo que la función tiene un máximo en el punto (2, 1) y un mínimo en el punto (0, -1).
b) Hallar los intervalos de crecimiento y de decrecimiento de la función para los valores de los parámetros a, b y c encontrados en el apartado anterior.

Seguir leyendo Problema 1295

Problema 1293

Una empresa quiere fabricar un producto nuevo. Encomienda un estudio de mercado que determina que la evolución de las ventas en los próximos seis años seguirá la función , donde representa la cantidad de miles de unidades vendidas en función del tiempo expresado en años.

a) ¿Cuántas unidades venderá el primer año? Salvo el instante inicial (t = 0), ¿se prevé que habrá algún otro año en que no se producirá ninguna venta?
b) ¿En qué año se producirá el máximo número de ventas y cuántos productos se habrán vendido ese año?

Seguir leyendo Problema 1293

Problema 1291

El beneficio de una empresa, expresado en millones de euros, es dado por la función siguiente, en la que x indica el número de años que han pasado desde que comenzó a funcionar:

a) ¿Cuál es el beneficio en el momento en que la empresa empieza a funcionar? En qué momento la empresa pasa de tener beneficios a tener pérdidas?
b) ¿En qué momento consigue la empresa el beneficio máximo? ¿Cuál es este beneficio máximo?

Seguir leyendo Problema 1291

Problema 1188

Sea la función , .

a) Halla los puntos de corte de la función con el eje de abscisas y, si existen, los máximos y mínimos relativos y los puntos de inflexión.
b) Estudia los intervalos de crecimiento y decrecimiento, concavidad y convexidad. Esboza una gráfica de la función.
c) Calcula la recta tangente a la gráfica de la función en el punto de abscisa x=2.

Seguir leyendo Problema 1188