Archivo de la etiqueta: Test de la derivada segunda

Problema 1297

Un centro de formación organiza un curso subvencionado que tiene un coste fijo de 9.000 €, al que hay que sumar una cantidad que varía según el número de alumnos del curso y que es dada por la función , donde x representa el número de alumnos matriculados. El Consejo Comarcal ha otorgado al centro una subvención de 5.000 € para la organización del curso y el Ayuntamiento paga el centro 30 € por cada alumno matriculado.
El gasto que debe asumir el centro es la diferencia entre el coste total del curso y las dos subvenciones recibidas. ¿Cuántos alumnos deben matricularse en el curso para que el gasto sea mínimo para el centro y cuál sería este gasto?

Seguir leyendo Problema 1297

Problema 1295

Considere la función

a) Hallar los valores de los parámetros a, b y c sabiendo que la función tiene un máximo en el punto (2, 1) y un mínimo en el punto (0, -1).
b) Hallar los intervalos de crecimiento y de decrecimiento de la función para los valores de los parámetros a, b y c encontrados en el apartado anterior.

Seguir leyendo Problema 1295

Problema 1293

Una empresa quiere fabricar un producto nuevo. Encomienda un estudio de mercado que determina que la evolución de las ventas en los próximos seis años seguirá la función , donde representa la cantidad de miles de unidades vendidas en función del tiempo expresado en años.

a) ¿Cuántas unidades venderá el primer año? Salvo el instante inicial (t = 0), ¿se prevé que habrá algún otro año en que no se producirá ninguna venta?
b) ¿En qué año se producirá el máximo número de ventas y cuántos productos se habrán vendido ese año?

Seguir leyendo Problema 1293

Problema 1288

El coste de elaboración de un menú en un restaurante es de 8 €. Se ha realizado un estudio de mercado y se ha llegado a la conclusión de que si el precio del menú es de 18 € entran a comer en el restaurante 120 clientes. También se ha concluido que la relación entre el precio del menú y el número de clientes es lineal, por lo que, por cada euro que aumentamos el precio del menú, disminuye en 4 el número de clientes. Y al revés, por cada euro que disminuimos el precio, aumenta en 4 el número de clientes.

a) Obtener la función que expresa el beneficio del restaurante en función del número de euros en que aumentamos o disminuimos el precio inicial del menú.
b) Busque en cuantos euros hay que aumentar o disminuir el precio inicial del menú para que el restaurante obtenga el máximo beneficio. ¿Cuál sería el precio final del menú y cuál sería el beneficio obtenido con este precio?

Seguir leyendo Problema 1288

Problema 1151

Sea la función , en la que ln indica el logaritmo neperiano, definida para x> 0.

a) Calcular las coordenadas del punto de la curva en que la recta tangente a la curva en este punto es horizontal. Estudiar si este punto es un extremo relativo y clasificarlo.
b) Calcular el área del recinto limitado por la curva , las rectas verticales x=1 y x=e, y el eje de abscisas.

Seguir leyendo Problema 1151

Problema 1106

Dada la función

a) Calcula A, B, y C sabiendo que su recta tangente en el punto de abscisa x = 0 es horizontal, que además la función tiene un extremo relativo en el punto de abscisa x = 2 y que corta al eje OX en x =1.
b) Para los valores obtenidos calcula los máximos y los mínimos de la función.

Seguir leyendo Problema 1106